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Rotating convection is analysed numerically in a cylinder of aspect ratio one, for
Prandtl number about 7. Traditionally, the problem has been studied within the
Boussinesq approximation with density variation only incorporated in the gravita-
tional buoyancy term and not in the centrifugal buoyancy term. In that limit, the
governing equations admit a trivial conduction solution. However, the centrifugal
buoyancy changes the problem in a fundamental manner, driving a large-scale
circulation in which cool denser fluid is centrifuged radially outward and warm
less-dense fluid is centrifuged radially inward, and so there is no trivial conduction
state. For small Froude numbers, the transition to three-dimensional flow occurs for
Rayleigh number R ~7.5 x 10°. For Froude numbers larger than 0.4, the centrifugal
buoyancy stabilizes the axisymmetric large-scale circulation flow in the parameter
range explored (up to R =3.5 x 10%). At intermediate Froude numbers, the transition
to three-dimensional flow is via four different Hopf bifurcations, resulting in different
coexisting branches of three-dimensional solutions. How the centrifugal and the
gravitational buoyancies interact and compete, and the manner in which the flow
becomes three-dimensional is different along each branch. The centrifugal buoyancy,
even for relatively small Froude numbers, leads to quantitative and qualitative changes
in the flow dynamics.

1. Introduction

Rotating Rayleigh-Bénard convection encompasses the competition between
rotation and thermal buoyancy in a paradigm problem that incorporates fundamental
processes of great importance to atmospheric and oceanic circulations, as well as being
of astrophysical importance. Early theoretical work (e.g. Veronis 1959; Chandrasekhar
1961) considered an infinite layer of fluid between two plates maintained at constant
temperatures and used the Boussinesq approximation which assumes that density
varies linearly with temperature, treats the remaining fluid properties as constants,
and density variations are only taken into account in the buoyancy terms.

Traditionally, density variation was only incorporated in the gravitational buoyancy
term and not in the centrifugal buoyancy term. This is valid only in the limit of
vanishingly small centrifugal force relative to gravity. In this limit, the governing
equations admit a trivial conduction solution, where the velocity corresponds to solid
body rotation (which is a static state in the rotating frame), together with a linear
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temperature profile across the layer. This basic state, being trivial, is independent of
all governing parameters. However, when the centrifugal force is not neglected, the
basic state is not trivial and depends on many parameters.

The centrifugal buoyancy drives a large-scale circulation in which the cool denser
fluid is centrifuged radially outward and the warm less-dense fluid is centrifuged
radially inward (Barcilon & Pedlosky 1967; Homsy & Hudson 1969; Hart 2000). This
large-scale circulation exists for any non-zero difference in temperature between the
top and bottom plate. Neglecting the centrifugal buoyancy allows a straightforward
linear stability analysis for the onset of convection from the conduction state;
Chandrasekhar (1961) provides a comprehensive account of this for horizontally
unbounded fluid layer.

The effects of lateral confinement in rotating convection are of fundamental im-
portance. The experiments of Rossby (1969) found significant discrepancies with the
unbounded theory for the onset of rotating convection, measuring convective heat
transfer at Rayleigh numbers much lower than predicted. Buell & Catton (1983) and
Pfotenhauer, Niemela & Donnelly (1987) proposed, based on linear stability analysis
and experiments, that the cause of the discrepancy was the lateral confinement of the
experiments. Subsequent experiments, designed to allow flow visualization (Zhong,
Ecke & Steinberg 1991, 1993; Ning & Ecke 1993), showed that the convective heat
transport recorded at Rayleigh numbers below the predicted critical value was due
to a so-called convective wall mode, consisting of alternating hot and cold thermal
plumes rising and descending in the cylinder sidewall boundary layer, and precessing
retrograde with respect to the rotation of the cylinder. The linear stability analysis
of Goldstein et al. (1993, 1994) confirmed this picture of the onset of rotating
convection due to the combined effects of Coriolis force and lateral confinement in
a finite cylinder, in the absence of centrifugal buoyancy. This was further confirmed
by the asymptotic analyses of Herrmann & Busse (1993) and Kuo & Cross (1993).
The linear stability of the non-trivial basic state incorporating centrifugal buoyancy
in a finite cylinder has only been analysed in the asymptotic limit of infinite Coriolis
force and steady onset (Homsy & Hudson 1971). A stability analysis for finite values
of the parameters and allowing for unsteady non-axisymmetric modes of instability
has not been previously presented.

Centrifugal buoyancy destroys the horizontal translation invariance that is inherent
in the unbounded theoretical treatments of the problem and the reflection symmetry
about the cylinder half-height. When the centrifugal buoyancy is neglected, the onset
of convection is via a pitchfork bifurcation when the system is further restricted to
an axisymmetric subspace, giving two steady convecting states that are reflections of
each other (over a wide range of parameter space, with a sufficiently strong Coriolis
force acting, the conduction state is first unstable to the non-axisymmetric wall
modes). Centrifugal buoyancy renders the pitchfork bifurcation imperfect, resulting
in two distinct branches of (axisymmetric) steady states that are not related by any
symmetry (plus an unstable state connecting them). Viewing this problem in terms of
varying two parameters, the Froude number and the Rayleigh number, we find that
the zero-Froude-number pitchfork bifurcation is a very selective one-parameter path
through a codimension-two cusp bifurcation, and that the pair of convective states is
part of a non-trivial basic state that lies on a continuous but folded solution manifold.
This picture emerges from our computational study in which we computed this basic-
state solution manifold using arclength continuation techniques in Rayleigh- and
Froude-number parameter space. The linear stability of the axisymmetric solutions
to three-dimensional perturbations is analysed, and the results are compared with
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previous studies, shedding new light on the relevance of the centrifugal buoyancy in
rotating Rayleigh-Bénard convection.

2. Governing equations and numerical scheme

Consider the flow in a circular cylinder of radius ry and depth d, rotating at a
constant rate wrads~!. The top endwall is maintained at a constant temperature
T"=Ty—0.5AT and the bottom endwall at a constant temperature 7" =Ty + 0.5AT.
In the rotating frame of reference, the Navier—Stokes equations are

(8, +u-Vu=—-Vp* +V-(uVu) — pgz + 2pwu x % + po’r, (2.1)

where u is the velocity field in the rotating frame, p* is the pressure, u is the shear
viscosity, g is the gravitational acceleration, Z the unit vector in the vertical direction
z, and r is the radial vector in cylindrical coordinates. To lowest order, the density
varies linearly with temperature, i.e. p = o[l — «(T" — Ty)] = po(l — «T), where « is
the coefficient of volume expansion, Ty is the mean temperature, T =T" — Tj is the
temperature deviation (which we refer to simply as the temperature from now on)
and p is the density at Ty. The Boussinesq approximation treats all fluid properties
as constant, except for the density. Any term in equation (2.1) with a factor p can be
split into two terms, one with a factor py and the other with a factor —paT. If the
po term is not a gradient, it is the leading-order term, and the associated —poaT term
may be neglected. If it is a gradient, it can be absorbed into the pressure gradient, and
the associated —poaT term must be retained. The only oy terms that are gradients are

—p0gZ + po’r = V(—pogz + pow’r’/2), (2.2)

and so the only terms with density variations that remain are the gravitational and
the centrifugal buoyancies. The Navier—Stokes—Boussinesq equations for rotating
convection are (2.1) plus the temperature equation and the incompressibility condition:

(0, +u-Vu=—-Vp+vVu+gaT?+2wu x z —o*aTr, (2.3)
(8, +u-V)T = «kV°T, V-u=0, (2.4)

where p=p*/po + gz — w’r*/2 is the kinematic pressure including gravitational and
centrifugal contributions, v is the kinematic viscosity, and « is the thermal diffusivity.
The system is non-dimensionalized using d as the length scale, d*/«k as the time
scale, and AT as the temperature scale. There are five non-dimensional parameters:
the Rayleigh number R =agd>AT /kv, the Coriolis number £2 =wd?/v, the Froude
number F = w?ry/g, the Prandtl number o = v/k, and the aspect ratio y =ry/d. The
non-dimensional cylindrical domain is (r, 6, z) € [0, y] x [0, 2®n) x [—1/2,1/2]. The
resulting equations (from now on, u, T and p are dimensionless quantities) are

FR
(0 +u-V)u=—Vp+oViu+oRT: +202u x3— 2" "Tr, (2.5)
Y
(8, +u-V)T = VT, V-u=0. (2.6)
The boundary conditions for # and T are
r=y: I,=u=v=w=0, (2.7)
z=41/2: T=7F05 u=v=w=0, (2-8)

where (u, v, w) are the components of u in cylindrical coordinates.
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The governing equations are invariant under rotations around the axis of the
cylinder. If the Froude number is zero, the governing equations are also invariant to
a reflection K, about the half-height z =0, whose action is K (u, v, w, T, p)(r,0,z) =
(u, v, —w, —T, p)(r, 0, —z). For axisymmetric solutions it is convenient to introduce a
streamfunction v, where u = —1,/r and w =1, /r. The action of the reflection K, on
the streamfunction is K,y (r, 0, z) =—v(r, 6, —2z).

2.1. Numerical method

The governing equations have been solved using the second-order time-splitting
method proposed in Hughes & Randriamampianina (1998) combined with a pseudo-
spectral method for the spatial discretization, utilizing a Galerkin—Fourier expansion
in the azimuthal coordinate 6 and Chebyshev collocation in r and z. The radial
dependence of the variables is approximated by a Chebyshev expansion between —y
and y and enforcing their proper parities at the origin (Fornberg 1998). Specifically,
the scalar field T has even parity T(—r,0,z)=T(r,6 + 7, z), as does the vertical
velocity w, whereas u and v have odd parity. To avoid including the origin in the
collocation mesh, an odd number of Gauss—Lobatto points in r is used and the
equations are solved only in the interval (0, y]. Following Orszag & Patera (1983), we
have used the combinations u, =u+iv and u_ =u —iv in order to decouple the linear
diffusion terms in the momentum equations. For each Fourier mode, the resulting
Helmbholtz equations for 7', w, u, and u_ have been solved using a diagonalization
technique in the two coordinates r and z. The imposed parity of the functions
guarantees the regularity conditions at the origin needed to solve the Helmholtz
equations (Mercader, Net & Falqués 1991).

Steady solutions have been computed by Newton’s method. We have used a
first-order version of the time-stepping code described above for the calculation of
a Stokes preconditioner that allows a matrix-free invertion of the preconditioned
Jacobian needed in each Newton iteration (Mamun & Tuckerman 1995). The
corresponding linear system is solved by an iterative technique using a GMRES
package (Fraysse, Giraud & Langou 2003); with this method the Jacobian matrix
is never constructed nor stored. In order to follow steady solution branches we use
an arclength continuation algorithm that allows either the Rayleigh number or the
Froude number to vary during the continuation process (Bergeon et al. 1998). The
same techniques have proven to be efficient calculating and following rotating wave
solutions (Mercader, Batiste & Alonso 2006).

We have used 36 spectral modes in z and r and a time step df =2 x 10> thermal
time units in all computations; for the linear stability analysis and three-dimensional
computations, azimuthal wavenumbers up to 10 have been considered.

3. Axisymmetric solution manifold

The problem depends on five non-dimensional parameters, and a comprehensive
parametric analysis would be prohibitive. We have fixed y =1 to avoid very large
azimuthal wavenumber modes, and o =7.0 which essentially corresponds to water
near room temperature. We wish to analyse the relative importance of the gravitational
buoyancy (characterized by R) and the centrifugal buoyancy (characterized by F) in
a rotating system (the Coriolis acceleration being characterized by §2). In a physical
experiment, £2 and F vary simultaneously with the rotation frequency w and either
both are zero or both are different from zero. However, the classical treatment of
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FIGURE 1. (a) Isotherms and (b) streamlines of the base state at R=1.1 x 10* and F =0.4, in
a meridional plane where the left and right vertical boundaries shown are the cylinder sidewall
at r =y and 0 =0 and n. There are 10 positive (black) and 10 negative (grey) linearly spaced
contour levels in the ranges T € [—0.5,0.5] and v € [0, 0.8].

the problem has been to take F =0 and £2 #0, corresponding to the singular limit
g — oo. Here, we fix £2 =100, and consider variations in R and F.

3.1. The centrifugally dominated solution

In the absence of centrifugal buoyancy (F =0), the basic state is the conductive state
where the fluid is in solid-body rotation with a linear temperature profile: 7 =—z
and u =0. For non-zero Froude number, the basic state is more complex: the cool
fluid near the top of the cylinder is centrifuged radially outward while the warm fluid
close to the bottom is centrifuged radially inward. Figure 1 shows isotherms 7 and
streamlines v, plotted in a meridional plane, for R =1.1 x 10* and Froude number
F =0.4. For the aspect ratio considered, y =1, a single axisymmetric recirculation cell
results, with a wide almost uniform upwelling of warm fluid near the centre, whose
strength increases with increasing Froude number.

For R < R, =1.115 x 10%, a single stable state exists for a given point (F, R) in
parameter space. At (F, R)=(0, R¢,) there is a codimension-two cusp bifurcation
which gives rise to regions of parameter space with multiple solutions.

3.2. The primary cusp bifurcation C,

The base state as a function of F has been computed using continuation for several
values of R. Figure 2(a) shows sections of the base-state solution manifold, using the
temperature 7, on the axis at half-height (r =z =0) as a measure of the flow state. The
solution curves have been formally extended to negative values of F. The continuation
process uses arclength continuation, and F is a function of the arclength. During the
continuation process, F' changes sign several times, depending on R. If we restrict to
F = 0, the continuation curve obtained would consist of disjoint segments that in
fact are part of the same smooth continuation curve if negative F values are allowed.
Although negative values of F cannot be physically realized (F = w?ro/g = 0), they
reflect the action of the K, symmetry on the system, which is invariant to K, only
when F =0. The resulting extended solution curve is symmetric about the origin
(F,T.)=(0,0). When F # 0 the system is not K, invariant: the action of K, changes
the sign of the centrifugal buoyancy term in (2.5). However, the action of K, on a
solution with F > 0 results in a solution of (2.5) with Froude number value —F. A
negative value of F can be interpreted as a centripetal acceleration, advecting denser
fluid in toward the axis and lighter fluid radially outward.

At R=1.1 x 10* the section of the solution manifold is single-valued, but for
R > R¢, = 1.115 x 10%, the section is multi-valued for F near zero. At R, the solution
manifold develops a twist as shown schematically in figure 2(b). The curve section
R=Rc, has a vertical tangent at F=0. This corresponds to a cusp bifurcation.
Cross-sections of the solution manifold at constant R values correspond to the curves
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FIGURE 2. (a) Sections of the base-state solution manifold for various R as indicated.
(b) Schematic of the base-state solution manifold. (¢) Sections of the base-state solution
manifold for various F as indicated. Isotherms of the states at points marked with O and la-
belled 1 to 6 are shown in figure 3. Stable (unstable) solutions are shown as solid (dashed) lines.
(d) Projection of the saddle-node bifurcation curves, emerging from the cusp point C;, onto
the (R, F) plane.

in figure 2(a). Cross-sections at constant F values are shown in figure 2(c). The
cross-section at F =0 is a pitchfork bifurcation, where the conductive state (with
T.=0) loses stability at Rc, and two stable (in the axisymmetric subspace) solutions
are born, symmetrically related by K,. The Froude number acts as an unfolding
parameter, breaking the K, symmetry; the pitchfork bifurcation becomes part of
the codimension-two cusp bifurcation. For small values of F we have an imperfect
pitchfork: one of the branches is the centrifugal branch and extends smoothly to
R =0, while the other two branches are disconnected, appearing at a saddle-node
bifurcation at a critical value of R, as illustrated in figure 2(c). In the extended view
of the system including F <0, there are two loci of saddle-node bifurcations which
meet at the cusp bifurcation point C;, at F =0 and R = R, ; their projections onto
the (R, F) plane are shown in figure 2(d).

Figure 3 shows isotherms at R =1.3 x 10* of the three solutions at (a) F =0 and
() F=0.1. For F =0 the solutions labelled 1 and 3 are K,-reflections of each other
and the solution labelled 2 is the trivial conduction state. The centrifugal buoyancy
drives the cold fluid down the sidewall for all three F =0.1 solutions labelled 4, 5 and
6. Since the centrifugal force varies linearly with the radial distance, its effects near
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1 2 3

FIGURE 3. Isotherms at R =1.3 x 10*: (a) three coexisting states at F =0 on the pitchfork, as
shown in figure 2(c), labelled 1, 2 and 3; (b) three coexisting states at F =0.1 on the imperfect
pitchfork, as shown in figure 2(c), labelled 4, 5 and 6.
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FIGURE 4. (a) Sections of the base-state solution manifold for various R as indicated, and
(b) an enlargement showing the formation of the secondary cusp Cs.

the axis are negligible. On the solution labelled 6 the centrifugal buoyancy reinforces
the strong upwelling at the axis, whereas on 4 the upwelling occurs via a toroidal
ring at r =~ 0.5 and is accompanied by a cold thermal plume descending on the axis.
The unstable solution 5 is roughly the average of solutions 4 and 6. Considering
these various solutions at fixed R, one may think of them as belonging to distinct
solution branches. However, they are all continuous on a single solution manifold as
illustrated schematically in figure 2(b).

3.3. Secondary cusp bifurcations C, and C;

As R is increased beyond 1.3 x 10%, the base solution manifold becomes more twisted
as further cusp bifurcations occur. Figure 4(a) shows three sections of the manifold
at R=1.4 x 10% 1.6 x 10* and 1.8 x 10*. At R=1.4 x 10* the slope of the section
at (F, T,)=(0, 0) is negative, indicating that the conduction state (which had already
lost stability at R = R¢, ~ 1.115x 10*) has undergone a secondary cusp bifurcation C,
at R =R, ~ 1.342 x 10%, and the associated saddle-node bifurcations are identified in
the figure as the points near (F, T.) = (0, 0) where the slope of the section is vertical.
Linear stability analysis reveals that the conduction state following the secondary
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FIGURE 5. Section of the base solution manifold at R =1.8 x 10%, characterized by (a) T, and
(b) the Nusselt number. The solid (dashed) lines correspond to stable (unstable) states in the
axisymmetric subspace. The vertical dashed line at F =0.1 intersects the solution manifold
at seven distinct points (labelled a—g, corresponding isotherms are shown in figure 6) at one
point in parameter space, (F, R)=(0.1, 1.8 x 10%).

cusp bifurcation C, remains unstable, as are the solutions on the portion of the
section between the two saddle-nodes emerging from the cusp.

Figure 4(b) is an enlargement of the region near (F, T,.) = (0.1, 0.25), which shows
the development of a cusp bifurcation of the centrifugally dominated convective state
as R is increased from 1.4 x 10* to 1.6 x 10*. The section in this region becomes vertical
at the cusp point Cs at (F, R) =(0.0646, 1.418 x 10*). Before the cusp bifurcation, the
convective solution was stable, and following the bifurcation the section in the fold
between the two emergent saddle-node bifurcations is unstable and the rest is stable.

Figure 5(a) shows in more detail the stability of the solutions in the different
segments of the section at R =1.8 x 10*; the solid curves are stable, and the dashed
curves are unstable in the axisymmetric subspace. There are up to seven distinct
coexisting solution states for a given value of F. The dashed line at F =0.1 inter-
sects the solution manifold at seven distinct points. Figure 5(b) shows the same
solution manifold in terms of the Nusselt number, Nu, rather than 7.. The solutions
that are stable tend to have the largest Nu. Furthermore, for F > 0.544 the centri-
fugally dominated solution is the only solution and its Nusselt number increases
monotonically with F.

Figure 6 shows isotherms of the seven coexisting solutions at the single point
in parameter space (F, R)=(0.1, 1.8 x 10*) labelled in figure 5. The three solutions
(a), (b) and (c) are stable in the axisymmetric subspace. Solution (a) is centrifugally
dominated, belonging to the upper segment in figure 5(a), beginning at a saddle-node
bifurcation and extending to F — oo. The corresponding segments for different R
constitute the centrifugal branch CB. The other two stable solutions are characterized
by upwelling plumes on the axis and the sidewall for solution (») and downwelling
plumes on the axis and the sidewall for solution (c). Solutions (b) and (c) constitute
the downwelling (DB) and upwelling (UB) branches. The other solutions shown in
figure 6 are unstable.
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FIGURE 6. Isotherms of solutions on the base-state manifold at R =1.8 x 10* corresponding
to the seven different solutions coexisting at the one point in parameter space (F, R)=
(0.1, 1.8 x 10*), labelled in figure 5. The states (a)—(c) are stable in the axisymmetric subspace
and (d)—(g) are unstable.
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FIGURE 7. Sections of the base-state solution manifold for various R as indicated.

The solution manifold becomes more twisted generating more coexisting solutions
as R is increased. At (F, R)=(0, 22422), a further cusp bifurcation, C,, of the trivial
conduction state takes place, as illustrated by the sections of the solution manifold in
figure 7. For example, by R =2.8 x 10* for F = 0.1, there are nine coexisting states (the
vertical dashed line at F =0.1 in the figure intersects the manifold nine times). We
have continued the solution manifold out to R =3.5 x 10* and no further bifurcations
were found. Figure 8(a) is a bifurcation diagram showing the codimension-two cusp
bifurcations Cy, C,, C; and Cy4, and the saddle-node bifurcation curves emerging from
them. Note that the saddle-node bifurcation curves do not interest each other, they just
appear to do this in the projection onto the (R, F) parameter space. Also indicated in
the figure are the numbers of coexisting axisymmetric solutions in different regions of
parameter space. The extensions of the cusps and saddle-node bifurcations to F <0
are included as dotted curves. Figure 8(b) shows the sections of the cusp bifurcations
at F =0: they are pitchfork bifurcations due to the K, symmetry. The different
solutions emerging from the pitchfork bifurcations are labelled with the number of
positive eigenvalues determined from their linear stability analysis in the axisymmetric
subspace.
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FIGURE 8. (a) Bifurcation diagram showing the codimension-two cusp bifurcations Cy, C3,
C; and C4, and the saddle-node bifurcation curves emerging from them. (b) The pitchfork
bifurcations corresponding to the cusp bifurcations Cy, C, and Cy4 in the one-parameter path
with F =0. Solid (dashed) curves correspond to stable (unstable) states in the axisymmetric
subspace; the ‘+’ symbols indicate how many eigenvalues with positive real part are associated
with the unstable states.

4. Linear stability of axisymmetric solutions to three-dimensional perturbations

There are three different branches of solutions that are stable in the axisymmetric
subspace: the centrifugal CB, upwelling UB, and downwelling DB branches (shown
at R=1.8 x 10* in figure 5 as the three solid curves). Figures 6(a), 6(b) and 6(c)
show isotherms of the three branches CB, UB and DB, respectively. Solutions that
are unstable in the axisymmetric subspace continue to be unstable in the full space.
Nevertheless, it is important to characterize these unstable solutions as they may
be involved in global bifurcations, such as saddle-loop homoclinics and saddle-node-
invariant-circle bifurcations; the latter, for example, lead to radially travelling waves in
convection in a cylinder (Barkley & Tuckerman 1988; Lopez, Rubio & Marques 2006).

It is well known that, for F =0, the primary instability of the trivial conduction state
is three-dimensional, and wall modes consisting of alternating upward and downward
thermal plumes close to the sidewall are the dominant instability mechanism at the
Prandtl number o, Coriolis number §2, and aspect ratio y considered here (Goldstein
et al. 1993). Here, we investigate the stability of the non-trivial axisymmetric states.
Simultaneously with the arclength continuation, we compute the most dangerous
eigenvalues of the axisymmetric solutions using Krylov methods, determining the
growth rate and frequency of the different azimuthal wavenumber perturbations.

The upwelling branch UB is unstable to three-dimensional perturbations for all
parameter values considered here. Typical isotherms for this state are shown in
figure 6(b). The upwelling of warm fluid at the sidewall flows against the large-scale
circulation (LSC) driven by the centrifugal force, and so it is not surprising that this
state is unstable.

4.1. Stability analysis of the downwelling state

Typical isotherms for the downwelling state DB are shown in figure 6(c). They are
very similar to those of the centrifugal state CB (figure 6a), except for the downwelling
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FIGURE 9. Three-dimensional instabilities of the (a) downwelling and (b) centrifugal branches.
DB is stable to three-dimensional perturbations in the narrow triangular region delimited by
the saddle-node curve emerging from C; and the Hopf curves to m =1 and m =3 rotating
waves; CB is stable for all R considered, for sufficiently large F > 0.4.

cold plume on the cylinder axis. The stability properties of the downwelling branch
are summarized in figure 9(a). The dashed lines in this figure are saddle-node curves
at which CB, UB and DB branches are born. These curves are the solid lines in
figure 8(a) emanating from the cusp bifurcation points C; and C;, and they delineate
the regions of (R, F)-parameter space in which these axisymmetric solutions exist.
The solid lines are Hopf bifurcation curves where the DB solution becomes unstable
to three-dimensional perturbations with azimuthal wavenumber m as indicated on
the figure. The DB solution only exists to the right of the left-most saddle-node curve
emerging from the cusp point Cy, and it is stable only in the small triangular region
delimited by the saddle-node curve to the left, the Hopf bifurcation to the m =1
curve to the right, and the Hopf bifurcation to the m =3 curve at the bottom. All
the other Hopf bifurcations of DB are secondary as DB is already unstable to m =1
or 3. The vertices of this triangular region are codimension-two bifurcation points:
two fold-Hopf bifurcations FH; and F H;, and the double-Hopf bifurcation dH ;.
There is often complex dynamics associated with these codimension-two bifurcations
(Kuznetsov 1998), suggesting the possibility of complex nonlinear dynamics in the
neighbourhood of this region.

Figure 10(a) shows isotherms of the m =3 eigenmode of the DB axisymmetric
state at R=1.5 x 10* and F =0.3 at various depths. It is a wall mode born at a
supercritical Hopf bifurcation with frequency of about 9.04. The resulting limit cycle
is a rotating wave with three rising hot and three descending cold plumes near the
sidewall and precessing retrograde with respect to the system rotation with precession
period t=21/9.04 ~ 0.695. Figure 10(b) shows isotherms of the m =1 eigenmode
of the DB axisymmetric state at R=1.8 x 10* and F =0.4 at various depths. It is a
body-mode perturbation that comes about at a supercritical Hopf bifurcation with
Hopf frequency of about 0.227. The resulting limit cycle is an m =1 precession of the
cold thermal plume descending on the axis. The precession is prograde with respect to
the system rotation with precession period v =21/0.227 ~ 27.6. Note that the m =3
wall mode is a fast mode (r =~ 0.7) and that the m =1 body mode is a slow mode
(t =~ 28). The wall and body modes of the conduction state are likewise fast and slow,
and also precess retrograde and prograde respectively (Goldstein et al. 1993). The
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z=-0.1

FIGURE 10. Isotherms of the critical eigenmodes of the DB axisymmetric state, in horizontal
planes at z-levels as indicated. (a) m=3, R=1.5x 10*, F=0.3, and () m=1, R=1.8 x 10%,
F =0.4. There are 12 positive (black) and 12 negative (grey) uniformly spaced contours between
the minimum and maximum of the temperature eigenfunction.

(b)

remaining critical modes m =2 and m =4 in figure 9(a), which are never dominant
critical modes, are wall modes.

4.2. Stability analysis of the centrifugal state

Typical isotherms for the centrifugal state are shown in figure 6(a). The stability
properties of the centrifugal branch CB are summarized in figure 9(b). The CB
branch exists for all values of the parameters (R, F) except below the lower dashed
line emanating from Cj; this line is the saddle-node curve where the CB solution
disappears. The solid lines are Hopf bifurcation curves where the CB solution
becomes unstable to three-dimensional perturbations with azimuthal wavenumber
m as indicated in the figure. The primary instabilities of CB are supercritical
Hopf bifurcations to precessing wall modes with m=3 for R <2.02 x 10* and
m=2 for R>2.02 x 10*; CB is stable to three-dimensional perturbations above
these two Hopf curves, which intersect at the double Hopf bifurcation point
(R, F)=(2.01 x 10*,0.30002). The Hopf bifurcation to an m =3 wall mode at F =0 is
the primary instability of the conduction state studied in Goldstein et al. (1993). Their
linear stability analysis of the conduction state at y =1, £2 =100 and o0 = 6.7 (we have
studied o =7.0) shows that a supercritical Hopf bifurcation to an m =3 retrograde
precessing wall mode occurs at R ~ 7.5 x 10° with a Hopf frequency of about 15,
corresponding to a precession period of about 0.42. This agrees very well with the
estimates using the present numerical techniques, which give onset at R =7.67 x 10
with Hopf frequency of 15.29. Figure 11(a) shows isotherms of the m =3 eigenmode
of the conduction state at R=8 x 10° and F =0 at various depths. The resulting
limit cycle is a rotating wave with three hot rising and three cold descending plumes
near the sidewall and precessing retrograde with respect to the system rotation with
precession period T =~ 0.393. This eigenmode is K, symmetric, with the maximum
of the perturbation at half-height z=0. Its structure is very similar to the m =3
eigenmode of DB discussed above, the main difference being that the eigenmode of
DB is not K, symmetric owing to the centrifugal buoyancy driving an LSC.

For F # 0, the Hopf bifurcation to m =3 of the conduction state becomes the
Hopf bifurcation to m =3 of the centrifugal state CB. Figure 11(b) shows isotherms
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z=-0.1

FIGURE 11. Isotherms of the eigenmodes of the CB in horizontal planes at z-levels as indicated.
(@) m=3, R=8 x 103, F =0 (conductive state), (b) m=3, R=1.2 x 10*, F =0.35, (¢c) m =2,
R=3 x 10* F=0.3. There are 12 positive (black) and 12 negative (grey) uniformly spaced
contours between the minimum and maximum of the temperature eigenfunction.

of the corresponding eigenmode at R = 1.2 x 10* and F =0.35 at various depths. The
centrifugal buoyancy has broken the K, symmetry; the temperature eigenfunction has
its maximum near the bottom plate, as is the case with the m =3 eigenmode of DB.
The resulting wall mode precesses retrograde with a period T & 0.496 at this point in
parameter space.

Figure 11(c) shows isotherms of the m =2 eigenmode of the centrifugal state CB
at R=3 x 10* and F =0.3 at various depths. The temperature eigenfunction has its
maximum near the bottom plate. It is another wall mode, a rotating wave with two
hot rising and two cold descending plumes near the sidewall and precessing prograde
with respect to the system rotation with precession period 7 =~ 0.372.

5. Discussion and conclusions

Centrifugal buoyancy drives a large-scale circulation, LSC, which has a dramatic
impact on the basic states over an extensive range of parameter space. The
axisymmetric LSC suffers a number of axisymmetric cusp bifurcations as R is
increased. When viewed in a parameter space formally extended to negative Froude
numbers, these cusp bifurcations are seen to be associated with the twisting of the
LSC solution manifold. This twisted structure of the LSC solution manifold was
determined by using an arclength continuation technique. In the range of parameters
considered, we have found up to nine coexisting axisymmetric solution states at a
single point in parameter space. Of all these solutions, only three are ever stable
in the axisymmetric subspace. One of these, the centrifugal branch, exists in almost
all parameter space explored, and is basically the centrifugally driven LSC. Linear
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stability analysis of these three solution branches reveals that they become unstable to
three-dimensional perturbations via Hopf bifurcations in certain regions of parameter
space. In the limit of zero centrifugal force (F — 0), the associated conduction state
is unstable to a succession of bifurcations (both axisymmetric and non-axisymmetric)
over a very short range of R. For sufficiently strong Coriolis force, the primary
instability of the conduction state is a Hopf bifurcation to a wall mode. For small
centrifugal force (when y =1, 0 =7 and £2 =100, the small centrifugal force range
corresponds to F <0.05), F acts as a small imperfection parameter, softening the
bifurcations in the F =0 idealization and producing similar dynamics. In fact, for
R > R¢, and F <0.05, the centrifugal branch ceases to exist, and the two existing
axisymmetric states UB and DB come about from the pitchfork bifurcation at F =0.
Experimental results specifically designed to minimize the centrifugal buoyancy have
typically agreed well with theoretical and numerical results with F =0 that have
incorporated physically realistic boundary conditions (Bodenschatz, Pesch & Ahlers
2000; Sanchez-Alvarez et al. 2005).

For F >0.4, the flow properties change radically: the axisymmetric centrifugal
branch remains linearly stable to three-dimensional perturbations with m at least up
to 10 and for R at least up to 3.5 x 10* (the largest m and R we have investigated
so far); this centrifugally driven axisymmetric LSC is very robust and completely
dominates the convection problem with fast rotation. The UB branch ceases to exist
for F>0.5 and is never stable to three-dimensional perturbations; it is very likely
that this is because the fluid at the sidewall flows against the LSC driven by the
centrifugal force. The fluid flow of the DB branch is very similar to the flow in
the centrifugal branch, except for the presence of a downwelling cold plume on the
cylinder axis. The stability properties of DB for m > 1 (wall modes) are very similar
to the stability properties of CB, as can be seen from comparing figures 9(a) and 9(b).
However, the m =1 perturbation destabilizes the flow, and the DB state is only stable
in a small triangular region in parameter space (see figure 9a). This instability mode
corresponds to a precession of the downwelling cold plume on the cylinder axis.

For moderate Froude numbers, F € (0.05,0.4), the axisymmetric basic states
also become unstable to modes similar to those that the F =0 conduction state
becomes unstable to, but the critical Rayleigh numbers at which instability sets in are
increasingly larger with increasing F. In fact, the CB branch becomes stable to three-
dimensional perturbations with a given m for F sufficiently large in F € (0.05, 0.4).
In this region a sequence of codimension-two bifurcations takes place, that includes
cusp, fold-Hopf and double Hopf bifurcations. These occur in close proximity of
each other in (R, F) parameter space, and one can expect to find complex nonlinear
dynamics nearby.

There are very few systematic experimental studies of the effects of centrifugal
force in rotating convection, although Koschmieder (1993) extensively discusses its
importance in interpreting experimental observations. One very recent exception
is Becker et al. (2006) who have shown through both experiments and numerical
simulation that the centrifugal force has a significant influence on the quantitative
features of domain chaos in large-aspect-ratio rotating convection with relatively
slow rotation (they considered systems with y € (20, 80), £2 € [15, 19] and o =0.88).
They concluded that rotating convection experiments with large aspect ratios will be
severely influenced by centrifugal-force effects.

We find that for y =1, £2 =100 and o =7, the centrifugally driven axisymmetric
LSC dominates the rotating convection problem as the Froude number increases. For
faster rotation (larger £2) in larger-aspect-ratio cylinders, with all else being equal,
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the influence of centrifugal buoyancy can be expected to be even greater, providing
an even stronger quenching of non-axisymmetric disturbances.

This work was supported by the Spanish grants FIS2004-01336 and BFM2003-
00657, Catalan grant SGR-00024, and the National Science Foundation grant DMS-
0509594.
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